date: 5-3-2020 



SOURCE: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439223/


Acknowledgements

The authors thank K Kauffman for his thorough review of the manuscript, including providing critical feedback. < cannot find >

Footnotes - Financial & competing interests disclosure

This work was funded by the National Institutes of Health (Grant# EB 000244). Robert Langer is a co-founder and member of the board of directors of Moderna therapeutics. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

 --- "No writing assistance was utilized in the production of this manuscript."  < NOT UNDERSTOOD

https://books.google.com/books?id=wh6VCwAAQBAJ&dq=%22No+writing+assistance+was+utilized+in+the+production+of+this+manuscript.%22&source=gbs_navlinks_s 

References

Papers of special note have been highlighted as: • of interest; •• of considerable interest

1. Crawford NW, Bines JE, Royle J, Buttery JP. Optimizing immunization in pediatric special risk groups. Expert Rev. Vaccines. 2011;10(2):175–186. [PubMed] [Google Scholar]

2. Liu MA. Immunologic basis of vaccine vectors. Immunity. 2010;33(4):504–515. [PubMed] [Google Scholar]

3. Hilleman MR. Recombinant vector vaccines in vaccinology. Dev. Biol. Stand. 1994;82:3–20. [PubMed] [Google Scholar]

4. Deering RP, Kommareddy S, Ulmer JB, Brito LA, Geall AJ. Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines. Expert Opin. Drug Deliv. 2014;11(6):885–899. [PubMed] [Google Scholar]

5. Pascolo S. Vaccination with messenger RNA (mRNA) In: Bauer PDS, Hartmann PDG, editors. Toll-Like Receptors (TLRs) and Innate Immunity. Springer Berlin Heidelberg; Germany: 2008. pp. 221–235. [Google Scholar]

6. Jäschke A, Helm M. RNA sex. Chem. Biol. 2003;10(12):1148–1150. [PubMed] [Google Scholar]

7. Fotin-Mleczek M, Duchardt KM, Lorenz C, et al. Messenger RNA-based vaccines with dual activity induce balanced TLR-7 dependent adaptive immune responses and provide antitumor activity. J. Immunother. 2011;34(1):1–15. [PubMed] [Google Scholar]

8. Steinhagen F, Kinjo T, Bode C, Klinman DM. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–3355. [PMC free article] [PubMed] [Google Scholar]

9. Sorrentino S. Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell. Mol. Life Sci. CMLS. 1998;54(8):785–794. [PubMed] [Google Scholar]

10. Chira S, Jackson CS, Oprea I, et al. Progresses towards safe and efficient gene therapy vectors. Oncotarget. 2015;6(31):30675–30703. [PMC free article] [PubMed] [Google Scholar]

11. Ku SH, Jo SD, Lee YK, Kim K, Kim SH. Chemical and structural modifications of RNAi therapeutics. Adv. Drug Deliv. Rev. 2015 Epub ahead of print. [PubMed] [Google Scholar]

12. Lundstrom K. Alphaviruses in gene therapy. Viruses. 2009;1(1):13–25. [PMC free article] [PubMed] [Google Scholar]

13. Ogris M, Brunner S, Schüller S, Kircheis R, Wagner E. PEGylated DNA/transferring–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6(4):595–605. [PubMed] [Google Scholar]

14. Bessis N, GarciaCozar FJ, Boissier M-C. Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther. 2004;11(S1):S10–S17. [PubMed] [Google Scholar]

15. Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Hum. Gene Ther. 2006;17(3):253–263. [PubMed] [Google Scholar]

16. Waehler R, Russell SJ, Curiel DT. Engineering targeted viral vectors for gene therapy. Nat. Rev. Genet. 2007;8(8):573–587. [PMC free article] [PubMed] [Google Scholar]

17. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003;4(5):346–358. [PubMed] [Google Scholar]

18. Bouard D, Alazard-Dany N, Cosset F-L. Viral vectors: from virology to transgene expression. Br. J. Pharmacol. 2009;157(2):153–165. [PMC free article] [PubMed] [Google Scholar]

19. Gonzalez H, Hwang SJ, Davis ME. New class of polymers for the delivery of macromolecular therapeutics. Bioconjug. Chem. 1999;10(6):1068–1074. [PubMed] [Google Scholar]

20. Davis ME. The First Targeted Delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm. 2009;6(3):659–668. [PubMed] [Google Scholar]

21. Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 2012;7(12):779–786. [PubMed] [Google Scholar]

22. Lee H, Lytton-Jean AKR, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012;7(6):389–393. [PMC free article] [PubMed] [Google Scholar]

23. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem. Rev. 2009;109(2):259–302. [PubMed] [Google Scholar]

24. Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005;4(7):581–593. [PubMed] [Google Scholar]

25. Martin ME, Rice KG. Peptide-guided gene delivery. AAPS J. 2007;9(1):E18–E29. [PMC free article] [PubMed] [Google Scholar]

26. Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem. Int. Ed. 2008;47(8):1382–1395. [PubMed] [Google Scholar]

27. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 2009;8(2):129–138. [PMC free article] [PubMed] [Google Scholar]•• Review on the problems and recent solutions in RNA delivery with a focus on RNAi.

28. Heath WR, Carbone FR. Cross-presentation in viral immunity and self-tolerance. Nat. Rev. Immunol. 2001;1(2):126–134. [PubMed] [Google Scholar]• Review of the mechanisms of antigen processing and T-cell activation.

29. Kasturi SP, Pulendran B. Cross-presentation: avoiding trafficking chaos? Nat. Immunol. 2008;9(5):461–463. [PubMed] [Google Scholar]

30. Martinon F, Krishnan S, Lenzen G, et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 1993;23(7):1719–1722. [PubMed] [Google Scholar]

31. Hess PR, Boczkowski D, Nair SK, Snyder D, Gilboa E. Vaccination with mRNAs encoding tumor-associated antigens and granulocyte-macrophage colony-stimulating factor efficiently primes CTL responses, but is insufficient to overcome tolerance to a model tumor/self antigen. Cancer Immunol. Immunother. 2005;55(6):672–683. [PubMed] [Google Scholar]

32. Zhou W-Z, Hoon DSB, Huang SKS, et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum. Gene Ther. 1999;10(16):2719–2724. [PubMed] [Google Scholar]

33. Pollard C, Rejman J, De Haes W, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol. Ther. 2013;21(1):251–259. [PMC free article] [PubMed] [Google Scholar]

34. Hoerr I, Obst R, Rammensee HG, Jung G. In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol. 2000;30(1):1–7. [PubMed] [Google Scholar]

35. Mockey M, Bourseau E, Chandrashekhar V, et al. mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther. 2007;14(9):802–814. [PubMed] [Google Scholar]

36. Perche F, Benvegnu T, Berchel M, et al. Enhancement of dendritic cells transfection in vivo and of vaccination against B16F10 melanoma with mannosylated histidylated lipopolyplexes loaded with tumor antigen messenger RNA. Nanomed. Nanotechnol. Biol. Med. 2011;7(4):445–453. [PubMed] [Google Scholar]

37. Phua KKL, Staats HF, Leong KW, Nair SK. Intranasal mRNA nanoparticle vaccination induces prophylactic and therapeutic anti-tumor immunity. Sci. Rep. 2014;4:5128. [PMC free article] [PubMed] [Google Scholar]

38. Geall AJ, Verma A, Otten GR, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA. 2012;109(36):14604–14609. [PMC free article] [PubMed] [Google Scholar]

39. Brito LA, Chan M, Shaw CA, et al. A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol. Ther. 2014;22(12):2118–2129. [PMC free article] [PubMed] [Google Scholar]

40. Li W, Jr FCS. Lipid-based nanoparticles for nucleic acid delivery. Pharm. Res. 2007;24(3):438–449. [PubMed] [Google Scholar]

41. Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 2011;417(1):120–137. [PubMed] [Google Scholar]

42. Zhigaltsev IV, Maurer N, Edwards K, Karlsson G, Cullis PR. Formation of drug–arylsulfonate complexes inside liposomes: a novel approach to improve drug retention. J. Control. Rel. 2006;110(2):378–386. [PubMed] [Google Scholar]

43. Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, Harashima H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Rel. 2012;163(3):267–276. [PubMed] [Google Scholar]

44. Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013;12(11):967–977. [PubMed] [Google Scholar]

45. Basha G, Novobrantseva TI, Rosin N, et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of sirna in antigen-presenting cells. Mol. Ther. 2011;19(12):2186–2200. [PMC free article] [PubMed] [Google Scholar]

46. Sahay G, Querbes W, Alabi C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 2013;31(7):653–658. [PMC free article] [PubMed] [Google Scholar]

47. Semple SC, Akinc A, Chen J, et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010;28(2):172–176. [PubMed] [Google Scholar]• Methodical synthesis of cationic lipids which result in an important advancement in synthetic transfection technology.

48. Maier MA, Jayaraman M, Matsuda S, et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013;21(8):1570–1578. [PMC free article] [PubMed] [Google Scholar]

49. Jayaraman M, Ansell SM, Mui BL, et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo . Angew. Chem. Int. Ed. Engl. 2012;51(34):8529–8533. [PMC free article] [PubMed] [Google Scholar]

50. Love KT, Mahon KP, Levins CG, et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA. 2010;107(5):1864–1869. [PMC free article] [PubMed] [Google Scholar]

51. Whitehead KA, Dorkin JR, Vegas AJ, et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 2014;5:4277. [PMC free article] [PubMed] [Google Scholar]

52. Dong Y, Love KT, Dorkin JR, et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA. 2014;111(11):3955–3960. [PMC free article] [PubMed] [Google Scholar]

53. Cui L, Chen D, Zhu L. Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid. ACS Nano. 2008;2(5):921–927. [PubMed] [Google Scholar]

54. Dobbs W, Heinrich B, Bourgogne C, et al. Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J. Am. Chem. Soc. 2009;131(37):13338–13346. [PubMed] [Google Scholar]

55. Smisterová J, Wagenaar A, Stuart MCA, et al. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine–DNA complexes and the efficiency of gene delivery. J. Biol. Chem. 2001;276(50):47615–47622. [PubMed] [Google Scholar]

56. Hirsch-Lerner D, Zhang M, Eliyahu H, Ferrari ME, Wheeler CJ, Barenholz Y. Effect of ‘helper lipid’ on lipoplex electrostatics. Biochim. Biophys. Acta BBA - Biomembr. 2005;1714(2):71–84. [PubMed] [Google Scholar]

57. Koiwai K, Tokuhisa K, Karinaga R, et al. Transition from a normal to inverted cylinder for an amidine-bearing lipid/pDNA complex and its excellent transfection. Bioconjug. Chem. 2005;16(6):1349–1351. [PubMed] [Google Scholar]

58. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 2013;65(1):36–48. [PubMed] [Google Scholar]

59. Lu JJ, Langer R, Chen J. A novel mechanism is involved in cationic lipid-mediated functional siRNA delivery. Mol. Pharm. 2009;6(3):763–771. [PMC free article] [PubMed] [Google Scholar]

60. Takahashi H, Sinoda K, Hatta I. Effects of cholesterol on the lamellar and the inverted hexagonal phases of dielaidoylphosphatidylethanolamine. Biochim. Biophys. Acta. 1996;1289(2):209–216. [PubMed] [Google Scholar]

61. Zuhorn IS, Bakowsky U, Polushkin E, et al. Nonbilayer phase of lipoplex–membrane mixture determines endosomal escape of genetic cargo and transfection efficiency. Mol. Ther. 2005;11(5):801–810. [PubMed] [Google Scholar]

62. Woodle MC. Sterically stabilized liposome therapeutics. Adv. Drug Deliv. Rev. 1995;16(2):249–265. [Google Scholar]

63. Belliveau NM, Huft J, Lin PJ, et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids. 2012;1(8):e37. [PMC free article] [PubMed] [Google Scholar]• Study on the impact of mixing parameters in the microfluidic mixer on the formation of lipid nanoparticles.

64. Li S-D, Huang L. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Rel. Off. J. Control Rel. Soc. 2010;145(3):178–181. [PMC free article] [PubMed] [Google Scholar]

65. Buyens K, De Smedt SC, Braeckmans K, et al. Liposome based systems for systemic siRNA delivery: stability in blood sets the requirements for optimal carrier design. J. Control Rel. 2012;158(3):362–370. [PubMed] [Google Scholar]

66. Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature. 2006;440(7085):808–812. [PubMed] [Google Scholar]

67. Schlosser E, Mueller M, Fischer S, et al. TLR ligands and antigen need to be coencapsulated into the same biodegradable microsphere for the generation of potent cytotoxic T lymphocyte responses. Vaccine. 2008;26(13):1626–1637. [PubMed] [Google Scholar]

68. Lasic DD. The mechanism of vesicle formation. Biochem. J. 1988;256(1):1–11. [PMC free article] [PubMed] [Google Scholar]

69. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv. Pharm. Bull. 2015;5(3):305–313. [PMC free article] [PubMed] [Google Scholar]

70. Zhigaltsev IV, Belliveau N, Hafez I, et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28(7):3633–3640. [PubMed] [Google Scholar]

71. Huang C-H. Phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry (Mosc.) 1969;8(1):344–352. [PubMed] [Google Scholar]

72. Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim. Biophys. Acta BBA – Biomembr. 1973;298(4):1015–1019. [PubMed] [Google Scholar]

73. Semple SC, Klimuk SK, Harasym TO, et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta BBA – Biomembr. 2001;1510(1):152–166. [PubMed] [Google Scholar]

74. Maurer N, Wong KF, Stark H, et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 2001;80(5):2310–2326. [PMC free article] [PubMed] [Google Scholar]

75. Berger N, Sachse A, Bender J, Schubert R, Brandl M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 2001;223(1):55–68. [PubMed] [Google Scholar]

76. Jeffs LB, Palmer LR, Ambegia EG, Giesbrecht C, Ewanick S, MacLachlan I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm. Res. 2005;22(3):362–372. [PubMed] [Google Scholar]

77. Karnik R, Gu F, Basto P, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008;8(9):2906–2912. [PubMed] [Google Scholar]

78. Jahn A, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. Microfluidic directed formation of liposomes of controlled size. Langmuir. 2007;23(11):6289–6293. [PubMed] [Google Scholar]

79. Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM. Chaotic mixer for microchannels. Science. 2002;295(5555):647–651. [PubMed] [Google Scholar]•• Fundamental paper on the mechanisms of mixing in microchannels at low Reynolds numbers.

80. Leung AKK, Tam YYC, Chen S, Hafez IM, Cullis PR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B. 2015;119(28):8698–8706. [PubMed] [Google Scholar]

81. Swartz MA. The physiology of the lymphatic system. Adv. Drug Deliv. Rev. 2001;50(1):3–20. [PubMed] [Google Scholar]

82. Allen TM, Hansen CB, Guo LSS. Subcutaneous administration of liposomes: a comparison with the intravenous and intraperitoneal routes of injection. Biochim. Biophys. Acta BBA - Biomembr. 1993;1150(1):9–16. [PubMed] [Google Scholar]

83. Oussoren C, Velinova M, Scherphof G, van der Want JJ, van Rooijen N, Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: IV. Fate of liposomes in regional lymph nodes. Biochim. Biophys. Acta BBA - Biomembr. 1998;1370(2):259–272. [PubMed] [Google Scholar]

84. Henriksen-Lacey M, Bramwell VW, Christensen D, Agger E-M, Andersen P, Perrie Y. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J. Control. Rel. 2010;142(2):180–186. [PubMed] [Google Scholar]

85. Henriksen-Lacey M, Christensen D, Bramwell VW, et al. Comparison of the depot effect and immunogenicity of liposomes based on dimethyldioctadecylammonium (DDA), 3β-[n-(n′,n′-dimethylaminoethane)carbomyl], cholesterol (DC-Chol), and 1,2-dioleoyl-3-trimethylammonium propane (dotap): prolonged liposome retention mediates stronger Th1 responses. Mol. Pharm. 2011;8(1):153–161. [PubMed] [Google Scholar]

86. Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci. Rep. 2002;22(2):197–224. [PubMed] [Google Scholar]

87. Carstens MG, Camps MGM, Henriksen-Lacey M, et al. Effect of vesicle size on tissue localization and immunogenicity of liposomal DNA vaccines. Vaccine. 2011;29(29):4761–4770. [PubMed] [Google Scholar]

88. Kaur R, Bramwell VW, Kirby DJ, Perrie Y. Pegylation of DDA:TDB liposomal adjuvants reduces the vaccine depot effect and alters the Th1/Th2 immune responses. J. Control Rel. 2012;158(1):72–77. [PubMed] [Google Scholar]

89. van den Berg JH, Oosterhuis K, Hennink WE, et al. Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. J. Control Rel. 2010;141(2):234–240. [PubMed] [Google Scholar]

90. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 2004;83(3):97–111. [PubMed] [Google Scholar]

91. Remaut K, Lucas B, Braeckmans K, Demeester J, De Smedt SC. Pegylation of liposomes favours the endosomal degradation of the delivered phosphodiester oligonucleotides. J. Control Rel. 2007;117(2):256–266. [PubMed] [Google Scholar]

92. Yang Q, Lai SK. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015;7(5):655–677. [PMC free article] [PubMed] [Google Scholar]

93. Judge A, McClintock K, Phelps JR, MacLachlan I. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol. Ther. 2006;13(2):328–337. [PubMed] [Google Scholar]

94. Martinez-Pomares L. The mannose receptor. J. Leukoc. Biol. 2012;92(6):1177–1186. [PubMed] [Google Scholar]

95. Geijtenbeek TBH, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell. 2000;100(5):575–585. [PubMed] [Google Scholar]

96. Jiang W, Swiggard WJ, Heufler C, et al. The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature. 1995;375(6527):151–155. [PubMed] [Google Scholar]

97. Valladeau J, Ravel O, Dezutter-Dambuyant C, et al. Langerin, a novel C-Type lectin specific to langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity. 2000;12(1):71–81. [PubMed] [Google Scholar]

98. Karanikas V, Hwang LA, Pearson J, et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan–MUC1 fusion protein. J. Clin. Invest. 1997;100(11):2783–2792. [PMC free article] [PubMed] [Google Scholar]

99. Espuelas S, Thumann C, Heurtault B, Schuber F, Frisch B. Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug. Chem. 2008;19(12):2385–2393. [PubMed] [Google Scholar]

100. Reina JJ, Rojo J. Glycodendritic structures: tools to interact with DC-SIGN. Braz. J. Pharm. Sci. 2013;49(SPE):109–124. [Google Scholar]

101. Perche F, Gosset D, Mével M, et al. Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J. Drug Target. 2011;19(5):315–325. [PubMed] [Google Scholar]

102. Dudziak D, Kamphorst AO, Heidkamp GF, et al. Differential antigen processing by dendritic cell subsets in vivo . Science. 2007;315(5808):107–111. [PubMed] [Google Scholar]

103. Leroux-Roels G. Unmet needs in modern vaccinology: adjuvants to improve the immune response. Vaccine. 2010;28(Suppl. 3):C25–C36. [PubMed] [Google Scholar]

104. Almeida AJ, Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007;59(6):478–490. [PubMed] [Google Scholar]

105. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867–6875. [PubMed] [Google Scholar]

106. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650. [PubMed] [Google Scholar]

107. Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show potent adjuvant activity when simply admixed with protein antigens. Mol. Pharm. 2011;8(4):1174–1185. [PMC free article] [PubMed] [Google Scholar]

108. Adler-Moore J, Munoz M, Kim H, et al. Characterization of the murine Th2 response to immunization with liposomal M2e influenza vaccine. Vaccine. 2011;29(27):4460–4468. [PubMed] [Google Scholar]

109. Ravindran R, Maji M, Ali N. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid–trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol. Pharm. 2012;9(1):59–70. [PubMed] [Google Scholar]

110. Rizwan SB, McBurney WT, Young K, et al. Cubosomes containing the adjuvants imiquimod and monophosphoryl lipid A stimulate robust cellular and humoral immune responses. J. Control Rel. 2013;165(1):16–21. [PubMed] [Google Scholar]

111. Shirota H, Klinman DM. Recent progress concerning CpG DNA and its use as a vaccine adjuvant. Exp. Rev. Vaccines. 2014;13(2):299–312. [PMC free article] [PubMed] [Google Scholar]

112. Erikçi E, Gursel M, Gürsel İ. Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials. 2011;32(6):1715–1723. [PubMed] [Google Scholar]

113. Bal SM, Hortensius S, Ding Z, Jiskoot W, Bouwstra JA. Co-encapsulation of antigen and Toll-like receptor ligand in cationic liposomes affects the quality of the immune response in mice after intradermal vaccination. Vaccine. 2011;29(5):1045–1052. [PubMed] [Google Scholar]

114. Wu TY-H, Singh M, Miller AT, et al. Rational design of small molecules as vaccine adjuvants. Sci. Transl. Med. 2014;6(263):263ra160–263ra160. [PubMed] [Google Scholar]

115. Jensen S, Thomsen AR. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 2012;86(6):2900–2910. [PMC free article] [PubMed] [Google Scholar]

116. Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics – developing a new class of drugs. Nat. Rev. Drug Discov. 2014;13(10):759–780. [PubMed] [Google Scholar]

117. Balachandran S, Roberts PC, Brown LE, et al. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity. 2000;13(1):129–141. [PubMed] [Google Scholar]

118. Banerjee S, Chakrabarti A, Jha BK, et al. Cell-type-specific effects of RNase L on viral induction of beta interferon. mBio. 2014;5(2):e00856–e00814. [PMC free article] [PubMed] [Google Scholar]

119. Karikó K, Buckstein M, Ni H, Weissman D. Suppression of RNA recognition by toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. [PubMed] [Google Scholar]•• Fundamental paper on the effect of nucleoside modification in RNA recognition.

120. Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mrna yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. J. Am. Soc. Gene Ther. 2008;16(11):1833–1840. [PMC free article] [PubMed] [Google Scholar]

121. Kübler H, Scheel B, Gnad-Vogt U, et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man Phase I/IIa study. J. Immunother. Cancer. 2015;3(1):26. [PMC free article] [PubMed] [Google Scholar]

122. Riedmann EM. Human vaccines and immunotherapeutics. Hum. Vaccines Immunother. 2013;9(10):2034–2037. [PubMed] [Google Scholar]

123. Peabody DS. Translation initiation at non-AUG triplets in mammalian cells. J. Biol. Chem. 1989;264(9):5031–5035. [PubMed] [Google Scholar]

124. Malarkannan S, Horng T, Shih PP, Schwab S, Shastri N. Presentation of out-of-frame peptide/MHC Class I complexes by a novel translation initiation mechanism. Immunity. 1999;10(6):681–690. [PubMed] [Google Scholar]

125. Mauro VP, Chappell SA. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014;20(11):604–613. [PMC free article] [PubMed] [Google Scholar]

126. Litzinger DC, Buiting AMJ, van Rooijen N, Huang L. Effect of liposome size on the circulation time and intraorgan distribution of amphipathic poly(ethylene glycol)-containing liposomes. Biochim. Biophys. Acta BBA - Biomembr. 1994;1190(1):99–107. [PubMed] [Google Scholar]

127. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat. Rev. Immunol. 2010;10(11):787–796. [PubMed] [Google Scholar]• Review on the problems and advances in vaccinology with a focus on the delivery of antigens and enhancement of efficacy.

128. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J. Control Rel. 2006;112(1):26–34. [PubMed] [Google Scholar]

129. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008;38(5):1404–1413. [PubMed] [Google Scholar]

130. Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert Rev. Vaccines. 2015;14(2):221–234. [PubMed] [Google Scholar]

131. Kenney RT, Frech SA, Muenz LR, Villar CP, Glenn GM. Dose sparing with intradermal injection of influenza vaccine. N. Engl. J. Med. 2004;351(22):2295–2301. [PubMed] [Google Scholar]

132. Mutsch M, Zhou W, Rhodes P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell's palsy in Switzerland. N. Engl. J. Med. 2004;350(9):896–903. [PubMed] [Google Scholar]

133. Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010;70(22):9031–9040. [PubMed] [Google Scholar]

134. Tagawa ST, Lee P, Snively J, et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with stage IV melanoma. Cancer. 2003;98(1):144–154. [PubMed] [Google Scholar]

135. Pardi N, Tuyishime S, Muramatsu H, et al. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control Rel. 2015;217:345–351. [PMC free article] [PubMed] [Google Scholar]

136. McCullough KC, Milona P, Thomann-Harwood L, et al. Self-amplifying replicon RNA vaccine delivery to dendritic cells by synthetic nanoparticles. Vaccines. 2014;2(4):735–754. [PMC free article] [PubMed] [Google Scholar]

137. Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine. 2012;30(30):4414–4418. [PubMed] [Google Scholar]

138. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo . Virology. 1997;239(2):389–401. [PubMed] [Google Scholar]

139. Hekele A, Bertholet S, Archer J, et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerg. Microbes Infect. 2013;2(8):e52. [PMC free article] [PubMed] [Google Scholar]

140. Weide B, Pascolo S, Scheel B, et al. Direct injection of protamine-protected mRNA: results of a Phase 1/2 vaccination trial in metastatic melanoma patients. J. Immunother. 2009;32(5):498–507. [PubMed] [Google Scholar]

141. Xue HY, Guo P, Wen W-C, Wong HL. Lipid-based nanocarriers for RNA delivery. Curr. Pharm. Des. 2015;21(22):3140–3147. [PMC free article] [PubMed] [Google Scholar]

142. Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015;15(11):7300–7306. [PubMed] [Google Scholar]

143. MacGregor RR, Boyer JD, Ugen KE, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus type 1 infection: safety and host response. J. Infect. Dis. 1998;178(1):92–100. [PubMed] [Google Scholar]

144. Ferraro B, Morrow MP, Hutnick NA, Shin TH, Lucke CE, Weiner DB. Clinical applications of DNA vaccines: current progress. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2011;53(3):296–302. [PMC free article] [PubMed] [Google Scholar]

145. Weide B, Garbe C, Rammensee H-G, Pascolo S. Plasmid DNA- and messenger RNA-based anti-cancer vaccination. Immunol. Lett. 2008;115(1):33–42. [PubMed] [Google Scholar]


Articles from Therapeutic Delivery are provided here courtesy of Future Science Group

[ END ]